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Abstract
Cancer cachexia is a severe muscle wasting syndrome associated to cancer and distinct from anorexia, which is often present in this condition. Muscle wasting is 
exacerbated in cancer patients by chemotherapy treatments. Indeed, chemotherapy itself can induce muscle wasting in animal models in the absence of cancer. 
Exercise is currently proposed in multimodal therapies for cancer patients. Both endurance and resistance exercise are safe and do not seem to provoke further damage 
to a frail muscle tissue due to tumor dependent dystrophin downregulation. Through its pleiotropic effects, the benefits of exercise spam from a shift from pro- to 
anti-inflammatory cytokines, to direct effects on muscle fibers, such as an amelioration of the autophagic flux and pathways involved in protein metabolism. In 
addition, exercise positively affects the muscle stem cell niche, favoring a pro-myoogenic environment. Since tumor- and chemotherapy-induced muscle wasting share 
molecular mechanisms, exercise may have the potential to counteract both disease- and therapy-related side effects and to rescue muscle homeostasis.

*Correspondence to: Dario Coletti, Institute of Biology Paris-Seine, B2A 
Biological Adaptation and Ageing, 7 quai St Bernard, bat A, 6eme étage, case 
courrier 256, 75252 Paris Cedex 5, Franc,. Tel. +33 (0) 1 44 27 34 75; Fax +33 (0) 
1 44 27 21 35; E-mail dario.coletti@upmc.fr 

Key words: cancer cachexia, skeletal muscle atrophy, cisplatin, Folfiri, colon cancer 
C26
Special Issue: Assisted Exercise

Ugo Carraro
Interdepartmental Center of Myology
University of Padova
Italy

Paolo Gargiulo
Inst. f. Biomed. and Neural
Engineering / Biomed Technology Centre
Reykjavik University & Landspitali Reykjavik
Iceland

Received: May 14, 2018; Accepted: May 23, 2018; Published: May 28, 2018

Introduction
Cancer-cachexia is a syndrome characterized by a severe decrease 

of body weight, accounted for by specific loss of skeletal muscle and 
adipose tissues. Cachexia, which is distinct from anorexia, is due to a 
combination of reduced food intake and metabolic changes, including 
high energy expenditure, excess catabolism and inflammation [1]. 
Cachexia is linked to the production of cytokines by the tumor itself or 
the immune system of the host, which play a major role in the regulation 
of muscle wasting [2]. Pro-inflammatory cytokines, such as IL-6, act as 
double-edged swords since they recruit NK cells to attack tumor cells 
[3], but also induce a systemic metabolic stress response that blocks the 
effects of anti-cancer immunotherapy [4]. The pivotal role of fat tissue 
in driving the chronic inflammation that triggers cachexia was recently 
recognized [5, 6]. Skeletal muscle tissue is enriched in various stem 
cells but not in inflammatory cells in cachexia [7]; nonetheless, it is a 
primary target of pro-inflammatory cytokines, which induce muscle 
fiber atrophy and stem cell dysregulation and apoptosis [8-10].

Cachexia is associated to a large extent with cancers of the pancreas, 
esophagus, stomach, lung, liver and bowel; this group of malignancies 
is responsible for 50% of all cancer deaths worldwide [1] and cachexia 
is directly accountable for the death of about 20% of all cancer patients 
[11]. Being associated with poor prognosis and a lower quality of life 
for patients, cachexia remains a major challenge in the management of 
cancer patients to date.

Muscle wasting in cachexia affects striated muscles [12, 13], with 
important  gender differences , likely linked to sex hormones [14]. 
Great progress is being made in the understanding of the molecular 
mechanisms underlying muscle wasting, with a central role played by 
proteasome-mediated protein degradation [15]. As a consequence, 
several treatments are now  being proposed to specifically counteract 
muscle wasting [16-18].

Chemotherapy remains the elective treatment for different cancers 
since it directly induces the death of tumor cells and helps endogenous 

host responses against cancer [19]. However, chemoterapy may induce 
muscle wasting, too, and loss of skeletal muscle during chemotherapy 
is prognostic of poor survival [20]. Consequently controlling muscle 
wasting especially in chemotherapy-treated patients is of the greatest 
importance. In spite of this, few studies have investigated this 
phenomenon up to date.

In this concise review the effects of exercise on cancer- and 
chemotherapy-induced muscle wasting are discussed. 

Cachexia as a multisystemic syndrome: the relevance of 
tissue-tissue interactions

Although cachexia is characterized above all by fat and lean body 
mass wastage, fat and skeletal muscle tissues are unlikely to be the only 
tissues directly involved in this multifactorial, complex syndrome. 
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to mechanical damage during exercise is widely diffuse. In cancer 
cachexia a deregulation of the dystrophindistroglycan complex has 
been reported suggesting that the skeletal muscle is particularly 
exposed to mechanical damage in these patients [32]. From the above 
the question arises whether to exercise or not to exercise in cachexia. 
With the aim of addressing this therapeutic dilemma, we performed 
a meta-analysis on scientific studies from the last decade dealing with 
exercise performed by cachectic patients [33]. We observed differential 
effects exerted by exercise, depending on the pathology considered 
and the kind of exercise performed: a global positive effect of exercise 
was observed when all the pathologies considered were pooled 
together; also, a significantly positive effect of exercise was observed 
in patients affected by RA. On the contrary, when RA was excluded 
from the analysis the effects of exercise on cachexia were not significant. 
Considering separately the kind of exercises performed, it is interesting 
to observe how resistance exercise had positive, statistically significant 
effects on cachexia as opposed to endurance exercise [33]. However, 
several publications followed this metanalysis paper highlighting the 
beneficial effects of endurance exercise.

For instance, to further investigate the beneficial effects of exercise 
on cancer cachexia, our group exploited an animal model of cancer 
cachexia (tumor-bearing mice doing wheel running) and we showed that 
endurance exercise totally rescues muscle wasting [34]. In particular, 
we found that cancer triggers the induction of the autophagic markers 
LC3b and p62 in skeletal muscle in both mice and carcinoma patients. 
This scenario looks deleterious to muscle as well as to other tissues; 
however, in a counterintuitive manner, autophagy is not deleterious 
per se as a mechanism of muscle tissue catabolism: it is the block of 
autophagy progression which occurs in the presence of a cancer which 
dysregulates muscle metabolism contributing to muscle wasting. 
With this reasoning, we gave to tumor-bearing mice pharmacological 
treatments that promote autophagy and we noticed that they restored 
muscle homeostasis by modulating autophagy in cancer cachexia 
[34]. In the same context, we showed that aerobic exercise or exercise 
mimetics (AICAR) promoted autophagy and had comparable, 
beneficial effects on muscle homeostasis.These observations shed light 
on a possible mechanism underlying the beneficial effects observed in 
cancer patients who perform a moderate amount of physical activity, 
and highlight the role of autophagy-triggering drugs as a potential 
therapeutic approach to treating cancer patients.

In addition, in skeletal muscle endurance exercise regulates 
ubiquitin ligase activity [34], increases Heat shock protein 60 and 
induces peroxisome proliferator- activated receptor gamma coactivator 
α1 expression [35]. Endurance exercise also affects the muscle fiber 
niche and promotes satellite cell myogenic differentiation [36]. At 
organismal level, exercise has beneficial, immunological and hormonal 
effects [37, 38]. For the all above, endurance exercise is now proposed 
as a treatment for cancer cachexia [39].

Exercise and the side effects of chemotherapy
In the paper entitled «Chemotherapy-induced muscle wasting: 

association with NF-κB and cancer cachexia» the group headed by Denis 
Guttridge, at the Ohio State University, studied the effects of cisplatin, 
a common anti-cancer therapeutic agent, in a cancer cachexia animal 
model. The latter consisted in mice bearing a subcutaneously grafted 
colon carcinoma, the C26 tumor (40). Guttridge and co-workers found 
that «although cisplatin is able to reduce tumor burden as expected, 
muscle wasting in mice nevertheless persists. Strikingly, cisplatin alone 
was seen to regulate muscle atrophy, which was independent of the 

The neuroendocrinology of the cachectic response to chronic illness 
is well known and has recently been reviewed by Weekers [21]. As far 
as skeletal muscle wasting is concerned, there appears to be a marked 
interaction with at least two other tissues, i.e. fat and the intestinal 
epithelium. Fat tissue is the primary energy store and an important 
endocrine organ, which in turn affects muscle homeostasis. High fat 
content (not simply BMI) correlates with a lower risk of mortality and 
decreased weight loss from lean tissue (22, 23). While decreased food 
intake due to anorexia is widely recognized as a contributing factor to 
the negative balance of muscle homeostasis in cachexia, the role of poor 
absorption of nutrients by the intestine was highlighted more recently. 
The proposed model is a vicious circle in which organ failure induces 
chronic inflammation, which in turn damages the intestinal barrier. 
The intestinal mucosa becomes infected by a wide range of bacteria. 
LPS may further exacerbate the damage to the mucosa, which in turn 
leads to reduced efficiency in nutrient absorption [24]. It is becoming 
consistently clear that systemic inflammation could be considered the 
common denominator of the many clinical and metabolic consequences 
of the cachexia syndrome. Chronic physical exercise has been associated 
with down regulation of inflammation [25, 26] and suggested as a non-
pharmacological strategy for both the prevention and treatment of 
several chronic diseases [27]. Aerobic training in particular, has been 
implicated with reduction of systemic inflammation [28]. Bearing in 
mind that cachexia is systemic, and that muscle wasting is but one of 
the many symptoms of the syndrome, it appears that any efforts aiming 
at attenuating its effects should be envisaged as to affect the organism as 
a whole. It seems quite clear that strategies which are simply designed to 
prevent muscle loss fail to reverse other aspects of the condition, despite 
the specific improvements reported. It has thus been proposed to adopt 
exercise training as a strategy to overcome systemic inflammation in 
cachexia, therefore counteracting muscle wasting.

Why exercise is effective against cancer-induced muscle 
wasting

Resistance exercise training is defined as multiple repetitions of 
static or dynamic muscular contractions performed against a high 
load or resistance. Resistance training increases muscle mass in healthy 
subjects and attenuates muscle wasting associated with ageing [29]. 
Endurance exercise training consists of performing low- to medium-
intensity exercise for long periods of time. Endurance training (such as 
running, cycling, or swimming) involves the use of several large groups 
of muscles and tends to be aerobic. Adaptations to endurance exercise 
include improved oxygen delivery to muscles and their increased 
oxidative capacity [30]. There are many clinically relevant reasons to 
recommend exercise for patient populations. Exercise training 1) will 
attenuate the physical deconditioning that patients typically experience 
upon diagnosis; 2) may optimize functioning when used as adjunctive 
therapy to standard pharmacological or surgical treatments; 3) may 
reduce secondary cardiovascular risk factors and attenuate other 
clinical consequences of the disease and/or treatment; 4) will optimize 
quality of life and possibly improve overall outcomes by improving 
physical functioning.

Although there are good reasons to recommend regular exercise 
in patient populations, this is not a straightforward endeavor in 
patients with chronic disease. In fact, physical exercise is also known to 
induce an acute inflammatory response and oxidative stress in healthy 
subjects as well as in patients [31]. A major concern regarding the use 
of exercise is exercise-induced damage. For instance, in Rheumatoid 
Arthritis (RA) the concern that inflamed joints might be exposed 
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commonly implicated ubiquitin proteasome system» (Damrauer et al., 
in press) This study appeared for the first time in Basic and Applied 
Myolgy in 2008 and for its relevance is now republished in European 
Journal of Translational Myology in 2018. It is worth noting that then 
another group had reported opposite findings, i.e. that chemotherapy 
inhibits protein breakdown and promotes protein synthesis [41, 42],  
however, both studies showed that cisplatin induced body weight loss 
and muscle wasting in healthy mice, suggesting that chemotherapy 
does indeed induce muscle loss. Very likely, cisplatin triggers multiple 
responses in muscle tissue, which ultimately lead to muscle fiber 
atrophy while the role of protein ubiquitination and proteasome-
mediated degradation remains controversial. Clearly these studies were 
relevant in addressing cancer cachexia in the presence of chemotherapy, 
which contributes to mimicking clinical settings better.

As mentioned above, Guttridge’s laboratory did not suggest a role 
for proteasome-mediated protein degradation during chemotherapy, 
while Attaix’s group found that chemotherapy reduced proteasome-
dependent protein degradation, both in the absence or presence of a 
tumor [41] (see also Damrauer et al., in press). A possible explanation 
is that the first group did not directly measure proteasome activity, but 
rather Murf1 expression. Murf1 is a muscle specific ubiquitin ligase 
which leads proteins to the proteasome, but it is not unique in its role 
and could be redundant with other ubiquitin-ligases, such as Atrogin1. 
In addition Murf1 provides an indirect estimate of protein degradation.

Interestingly, although, cisplatin induces Nf-KB expression, the 
latter is increased in muscle in the presence of a tumor and is sufficient 
to trigger muscle wasting [43]: thus a mechanism is produced whereby 
chemotherapy induces Nf-kB dependent muscle wasting. The fact that 
NF-kB targets not only muscle fibers but also muscle stem cells [44] 
suggests that chemotherapy may reach multiple targets, in addition to 
muscle fiber protein metabolism. Indeed, the findings that NF-kB is 
involved in both tumor- and chemotherapy-induced muscle wasting 
suggested that common pathways are activated. This has been recently 
confirmed by the group of Andrea Bonetto, at Indiana University [45]. 
By using a comprehensive approach based on liquid chromatography 
followed by mass spectrometry they compared the skeletal muscle 
proteome in C26-tumor bearing and chemotherapy treated mice 
(chemotherapy consisting of 5-fluorouracil (5-FU), Leucovorin (LV) 
and CPT-11, a combination also known as Folfiri). Authors found 
that cancer and chemotherapy promote the down-regulation of 235 
and 345 muscle proteins, respectively, the vast majority of which were 
modulated in common [45]. Mitochondrial dysfunction, TCA cycle, 
fatty acid metabolism, and Ca2+ signaling were among the altered 
pathways detected [45]. Further insights about muscle mitochondria 
dysregulation following chemotherapy came from the same group 
which proved that mitochondrial depletion is MAPK-dependent 
[46]. This is consistent with previous findings that muscle wasting is 
associated with up-regulation of ERK1/2 and p38 MAPKs [47]. In an 
elegant, recent study Bonetto and co-workers proposed the inhibition of 
the activin receptor 2B (ACVR2B) signaling to counteract both cancer- 
and chemotherapy-induced muscle wasting, by using ACVR2B/Fc, a 
soluble ACVR2B fusion protein and inhibitor of receptor downstream 
signaling [48]. ACVR2B/Fc was effective not only in counteracting 
Folfiri-induced skeletal muscle loss, but also the Folfiri negative effects 
on bone mass [48].

Given that cancer and chemotherapy activate common pathways in 
muscle and exercise has proven effective against cancer-induced muscle 
wasting, several research groups have been prompted to study whether 
physical activity can have beneficial effects during chemotherapy as 

well. Indeed, several epidemiological studies and clinical trials suggest 
that both resistance and endurance exercise should well be an integral 
part of supportive care for cancer patients undergoing chemotherapy 
[49-51]. Taken together these studies provide a rationale for using 
treatments to both counteract tumor growth and to reduce the side 
effects of chemotherapy. 

The most relevant research on chemotherapy-induced muscle 
wasting are summarized in a recent review published in European 
Journal of Translation Myology [52]. The European Journal of 
Translation Myology has published many papers related to muscle 
wasting linked to mobility disorders [53-59], to muscle atrophy in 
sarcopenia and disease states [60-62], and to physical exercise [63, 
64]. Originally devoted to biology, physiology, diagnostic, and to the 
rehabilitation of skeletal muscle tissue, the journal is now moving 
forward to cover additional fields in myology, thus taking on a broader 
medical and clinical interest. Exercise biological effects are usually 
reported in specialized journals, such as Sports Medicine [65] or The 
Physician and Sportsmedicine [66]. We suggest, instead, that a greater 
number of transdisciplinary journals, such as Biology, engineering 
and Medicine [67, 68] and European Journal of Translation Myology 
[69-71] dedicate original data articles and special issues to the effects 
of exercise with medical implications. This policy would give greater 
visibility to exercise training protocols for medical applications and 
would favor the incorporation of exercise into multimodal therapies 
against complex, multiorgan syndromes such as cachexia [72,73].

Conclusions
The following conclusions can be drawn from the above: 1) 

cachexia is a severe complication of many pathologies, particularly 
cancer, but also a side effect of chemotherapy; 2) cachexia should be 
counteracted since it accounts for a significant percentage of deaths, 
it affects the patients’ quality of life and interferes with therapy for the 
primary disease; 3) even though incomplete, current knowledge on 
the mechanisms of cachexia allows to set the goal of a therapy against 
cachexia, possibly acting at different levels of intervention; this is not 
in contrast with the fact that (4) the therapy of cachexia also consists in 
the primary disease therapy; 5) ideally, cachexia should be prevented 
rather than cured; 6) exercise may play a major role in both prevention 
of cachexia and rescue of lean mass, thanks to its systemic effects.
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