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Abstract

Cancer cachexia is a severe muscle wasting syndrome associated to cancer and distinct from anorexia, which is often present in this condition. Muscle wasting is
exacerbated in cancer patients by chemotherapy treatments. Indeed, chemotherapy itself can induce muscle wasting in animal models in the absence of cancer.
Exercise is currently proposed in multimodal therapies for cancer patients. Both endurance and resistance exercise are safe and do not seem to provoke further damage
to a frail muscle tissue due to tumor dependent dystrophin downregulation. Through its pleiotropic effects, the benefits of exercise spam from a shift from pro- to
anti-inflammatory cytokines, to direct effects on muscle fibers, such as an amelioration of the autophagic flux and pathways involved in protein metabolism. In
addition, exercise positively affects the muscle stem cell niche, favoring a pro-myoogenic environment. Since tumor- and chemotherapy-induced muscle wasting share

molecular mechanisms, exercise may have the potential to counteract both disease- and therapy-related side effects and to rescue muscle homeostasis.

Introduction

Cancer-cachexia is a syndrome characterized by a severe decrease
of body weight, accounted for by specific loss of skeletal muscle and
adipose tissues. Cachexia, which is distinct from anorexia, is due to a
combination of reduced food intake and metabolic changes, including
high energy expenditure, excess catabolism and inflammation [1].
Cachexia is linked to the production of cytokines by the tumor itself or
the immune system of the host, which play a major role in the regulation
of muscle wasting [2]. Pro-inflammatory cytokines, such as IL-6, act as
double-edged swords since they recruit NK cells to attack tumor cells
[3], but also induce a systemic metabolic stress response that blocks the
effects of anti-cancer immunotherapy [4]. The pivotal role of fat tissue
in driving the chronic inflammation that triggers cachexia was recently
recognized [5, 6]. Skeletal muscle tissue is enriched in various stem
cells but not in inflammatory cells in cachexia [7]; nonetheless, it is a
primary target of pro-inflammatory cytokines, which induce muscle
fiber atrophy and stem cell dysregulation and apoptosis [8-10].

Cachexia is associated to a large extent with cancers of the pancreas,
esophagus, stomach, lung, liver and bowel; this group of malignancies
is responsible for 50% of all cancer deaths worldwide [1] and cachexia
is directly accountable for the death of about 20% of all cancer patients
[11]. Being associated with poor prognosis and a lower quality of life
for patients, cachexia remains a major challenge in the management of
cancer patients to date.

Muscle wasting in cachexia affects striated muscles [12, 13], with
important gender differences , likely linked to sex hormones [14].
Great progress is being made in the understanding of the molecular
mechanisms underlying muscle wasting, with a central role played by
proteasome-mediated protein degradation [15]. As a consequence,
several treatments are now being proposed to specifically counteract
muscle wasting [16-18].

Chemotherapy remains the elective treatment for different cancers
since it directly induces the death of tumor cells and helps endogenous
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host responses against cancer [19]. However, chemoterapy may induce
muscle wasting, too, and loss of skeletal muscle during chemotherapy
is prognostic of poor survival [20]. Consequently controlling muscle
wasting especially in chemotherapy-treated patients is of the greatest
importance. In spite of this, few studies have investigated this
phenomenon up to date.

In this concise review the effects of exercise on cancer- and
chemotherapy-induced muscle wasting are discussed.

Cachexia as a multisystemic syndrome: the relevance of
tissue-tissue interactions
Although cachexia is characterized above all by fat and lean body

mass wastage, fat and skeletal muscle tissues are unlikely to be the only
tissues directly involved in this multifactorial, complex syndrome.
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The neuroendocrinology of the cachectic response to chronic illness
is well known and has recently been reviewed by Weekers [21]. As far
as skeletal muscle wasting is concerned, there appears to be a marked
interaction with at least two other tissues, i.e. fat and the intestinal
epithelium. Fat tissue is the primary energy store and an important
endocrine organ, which in turn affects muscle homeostasis. High fat
content (not simply BMI) correlates with a lower risk of mortality and
decreased weight loss from lean tissue (22, 23). While decreased food
intake due to anorexia is widely recognized as a contributing factor to
the negative balance of muscle homeostasis in cachexia, the role of poor
absorption of nutrients by the intestine was highlighted more recently.
The proposed model is a vicious circle in which organ failure induces
chronic inflammation, which in turn damages the intestinal barrier.
The intestinal mucosa becomes infected by a wide range of bacteria.
LPS may further exacerbate the damage to the mucosa, which in turn
leads to reduced efficiency in nutrient absorption [24]. It is becoming
consistently clear that systemic inflammation could be considered the
common denominator of the many clinical and metabolic consequences
of the cachexia syndrome. Chronic physical exercise has been associated
with down regulation of inflammation [25, 26] and suggested as a non-
pharmacological strategy for both the prevention and treatment of
several chronic diseases [27]. Aerobic training in particular, has been
implicated with reduction of systemic inflammation [28]. Bearing in
mind that cachexia is systemic, and that muscle wasting is but one of
the many symptoms of the syndrome, it appears that any efforts aiming
at attenuating its effects should be envisaged as to affect the organism as
awhole. It seems quite clear that strategies which are simply designed to
prevent muscle loss fail to reverse other aspects of the condition, despite
the specific improvements reported. It has thus been proposed to adopt
exercise training as a strategy to overcome systemic inflammation in
cachexia, therefore counteracting muscle wasting.

Why exercise is effective against cancer-induced muscle
wasting

Resistance exercise training is defined as multiple repetitions of
static or dynamic muscular contractions performed against a high
load or resistance. Resistance training increases muscle mass in healthy
subjects and attenuates muscle wasting associated with ageing [29].
Endurance exercise training consists of performing low- to medium-
intensity exercise for long periods of time. Endurance training (such as
running, cycling, or swimming) involves the use of several large groups
of muscles and tends to be aerobic. Adaptations to endurance exercise
include improved oxygen delivery to muscles and their increased
oxidative capacity [30]. There are many clinically relevant reasons to
recommend exercise for patient populations. Exercise training 1) will
attenuate the physical deconditioning that patients typically experience
upon diagnosis; 2) may optimize functioning when used as adjunctive
therapy to standard pharmacological or surgical treatments; 3) may
reduce secondary cardiovascular risk factors and attenuate other
clinical consequences of the disease and/or treatment; 4) will optimize
quality of life and possibly improve overall outcomes by improving
physical functioning.

Although there are good reasons to recommend regular exercise
in patient populations, this is not a straightforward endeavor in
patients with chronic disease. In fact, physical exercise is also known to
induce an acute inflammatory response and oxidative stress in healthy
subjects as well as in patients [31]. A major concern regarding the use
of exercise is exercise-induced damage. For instance, in Rheumatoid
Arthritis (RA) the concern that inflamed joints might be exposed
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to mechanical damage during exercise is widely diffuse. In cancer
cachexia a deregulation of the dystrophindistroglycan complex has
been reported suggesting that the skeletal muscle is particularly
exposed to mechanical damage in these patients [32]. From the above
the question arises whether to exercise or not to exercise in cachexia.
With the aim of addressing this therapeutic dilemma, we performed
a meta-analysis on scientific studies from the last decade dealing with
exercise performed by cachectic patients [33]. We observed differential
effects exerted by exercise, depending on the pathology considered
and the kind of exercise performed: a global positive effect of exercise
was observed when all the pathologies considered were pooled
together; also, a significantly positive effect of exercise was observed
in patients affected by RA. On the contrary, when RA was excluded
from the analysis the effects of exercise on cachexia were not significant.
Considering separately the kind of exercises performed, it is interesting
to observe how resistance exercise had positive, statistically significant
effects on cachexia as opposed to endurance exercise [33]. However,
several publications followed this metanalysis paper highlighting the
beneficial effects of endurance exercise.

For instance, to further investigate the beneficial effects of exercise
on cancer cachexia, our group exploited an animal model of cancer
cachexia (tumor-bearing mice doing wheel running) and we showed that
endurance exercise totally rescues muscle wasting [34]. In particular,
we found that cancer triggers the induction of the autophagic markers
LC3b and p62 in skeletal muscle in both mice and carcinoma patients.
This scenario looks deleterious to muscle as well as to other tissues;
however, in a counterintuitive manner, autophagy is not deleterious
per se as a mechanism of muscle tissue catabolism: it is the block of
autophagy progression which occurs in the presence of a cancer which
dysregulates muscle metabolism contributing to muscle wasting.
With this reasoning, we gave to tumor-bearing mice pharmacological
treatments that promote autophagy and we noticed that they restored
muscle homeostasis by modulating autophagy in cancer cachexia
[34]. In the same context, we showed that aerobic exercise or exercise
mimetics (AICAR) promoted autophagy and had comparable,
beneficial effects on muscle homeostasis. These observations shed light
on a possible mechanism underlying the beneficial effects observed in
cancer patients who perform a moderate amount of physical activity,
and highlight the role of autophagy-triggering drugs as a potential
therapeutic approach to treating cancer patients.

In addition, in skeletal muscle endurance exercise regulates
ubiquitin ligase activity [34], increases Heat shock protein 60 and
induces peroxisome proliferator- activated receptor gamma coactivator
al expression [35]. Endurance exercise also affects the muscle fiber
niche and promotes satellite cell myogenic differentiation [36]. At
organismal level, exercise has beneficial, immunological and hormonal
effects [37, 38]. For the all above, endurance exercise is now proposed
as a treatment for cancer cachexia [39].

Exercise and the side effects of chemotherapy

In the paper entitled «Chemotherapy-induced muscle wasting:
association with NF-kB and cancer cachexia» the group headed by Denis
Guttridge, at the Ohio State University, studied the effects of cisplatin,
a common anti-cancer therapeutic agent, in a cancer cachexia animal
model. The latter consisted in mice bearing a subcutaneously grafted
colon carcinoma, the C26 tumor (40). Guttridge and co-workers found
that «although cisplatin is able to reduce tumor burden as expected,
muscle wasting in mice nevertheless persists. Strikingly, cisplatin alone
was seen to regulate muscle atrophy, which was independent of the
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commonly implicated ubiquitin proteasome system» (Damrauer et al.,
in press) This study appeared for the first time in Basic and Applied
Myolgy in 2008 and for its relevance is now republished in European
Journal of Translational Myology in 2018. It is worth noting that then
another group had reported opposite findings, i.e. that chemotherapy
inhibits protein breakdown and promotes protein synthesis [41, 42],
however, both studies showed that cisplatin induced body weight loss
and muscle wasting in healthy mice, suggesting that chemotherapy
does indeed induce muscle loss. Very likely, cisplatin triggers multiple
responses in muscle tissue, which ultimately lead to muscle fiber
atrophy while the role of protein ubiquitination and proteasome-
mediated degradation remains controversial. Clearly these studies were
relevant in addressing cancer cachexia in the presence of chemotherapy,
which contributes to mimicking clinical settings better.

As mentioned above, Guttridge’s laboratory did not suggest a role
for proteasome-mediated protein degradation during chemotherapy,
while Attaix’s group found that chemotherapy reduced proteasome-
dependent protein degradation, both in the absence or presence of a
tumor [41] (see also Damrauer et al., in press). A possible explanation
is that the first group did not directly measure proteasome activity, but
rather Murfl expression. Murfl is a muscle specific ubiquitin ligase
which leads proteins to the proteasome, but it is not unique in its role
and could be redundant with other ubiquitin-ligases, such as Atroginl.
In addition Murfl provides an indirect estimate of protein degradation.

Interestingly, although, cisplatin induces Nf-KB expression, the
latter is increased in muscle in the presence of a tumor and is sufficient
to trigger muscle wasting [43]: thus a mechanism is produced whereby
chemotherapy induces Nf-kB dependent muscle wasting. The fact that
NF-kB targets not only muscle fibers but also muscle stem cells [44]
suggests that chemotherapy may reach multiple targets, in addition to
muscle fiber protein metabolism. Indeed, the findings that NF-kB is
involved in both tumor- and chemotherapy-induced muscle wasting
suggested that common pathways are activated. This has been recently
confirmed by the group of Andrea Bonetto, at Indiana University [45].
By using a comprehensive approach based on liquid chromatography
followed by mass spectrometry they compared the skeletal muscle
proteome in C26-tumor bearing and chemotherapy treated mice
(chemotherapy consisting of 5-fluorouracil (5-FU), Leucovorin (LV)
and CPT-11, a combination also known as Folfiri). Authors found
that cancer and chemotherapy promote the down-regulation of 235
and 345 muscle proteins, respectively, the vast majority of which were
modulated in common [45]. Mitochondrial dysfunction, TCA cycle,
fatty acid metabolism, and Ca2+ signaling were among the altered
pathways detected [45]. Further insights about muscle mitochondria
dysregulation following chemotherapy came from the same group
which proved that mitochondrial depletion is MAPK-dependent
[46]. This is consistent with previous findings that muscle wasting is
associated with up-regulation of ERK1/2 and p38 MAPKSs [47]. In an
elegant, recent study Bonetto and co-workers proposed the inhibition of
the activin receptor 2B (ACVR2B) signaling to counteract both cancer-
and chemotherapy-induced muscle wasting, by using ACVR2B/Fc, a
soluble ACVR2B fusion protein and inhibitor of receptor downstream
signaling [48]. ACVR2B/Fc was effective not only in counteracting
Folfiri-induced skeletal muscle loss, but also the Folfiri negative effects
on bone mass [48].

Given that cancer and chemotherapy activate common pathways in
muscle and exercise has proven effective against cancer-induced muscle
wasting, several research groups have been prompted to study whether
physical activity can have beneficial effects during chemotherapy as
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well. Indeed, several epidemiological studies and clinical trials suggest
that both resistance and endurance exercise should well be an integral
part of supportive care for cancer patients undergoing chemotherapy
[49-51]. Taken together these studies provide a rationale for using
treatments to both counteract tumor growth and to reduce the side
effects of chemotherapy.

The most relevant research on chemotherapy-induced muscle
wasting are summarized in a recent review published in European
Journal of Translation Myology [52]. The European Journal of
Translation Myology has published many papers related to muscle
wasting linked to mobility disorders [53-59], to muscle atrophy in
sarcopenia and disease states [60-62], and to physical exercise [63,
64]. Originally devoted to biology, physiology, diagnostic, and to the
rehabilitation of skeletal muscle tissue, the journal is now moving
forward to cover additional fields in myology, thus taking on a broader
medical and clinical interest. Exercise biological effects are usually
reported in specialized journals, such as Sports Medicine [65] or The
Physician and Sportsmedicine [66]. We suggest, instead, that a greater
number of transdisciplinary journals, such as Biology, engineering
and Medicine [67, 68] and European Journal of Translation Myology
[69-71] dedicate original data articles and special issues to the effects
of exercise with medical implications. This policy would give greater
visibility to exercise training protocols for medical applications and
would favor the incorporation of exercise into multimodal therapies
against complex, multiorgan syndromes such as cachexia [72,73].

Conclusions

The following conclusions can be drawn from the above: 1)
cachexia is a severe complication of many pathologies, particularly
cancer, but also a side effect of chemotherapy; 2) cachexia should be
counteracted since it accounts for a significant percentage of deaths,
it affects the patients’ quality of life and interferes with therapy for the
primary disease; 3) even though incomplete, current knowledge on
the mechanisms of cachexia allows to set the goal of a therapy against
cachexia, possibly acting at different levels of intervention; this is not
in contrast with the fact that (4) the therapy of cachexia also consists in
the primary disease therapy; 5) ideally, cachexia should be prevented
rather than cured; 6) exercise may play a major role in both prevention
of cachexia and rescue of lean mass, thanks to its systemic effects.
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